
2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
1

Inter-Process Communication and

Synchronization of Processes, Threads

and Tasks:

Lesson-8: Use of Multiple Semaphores

and counting Semaphore for

Synchronizing the Tasks

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
2

Use of Multiple Semaphores

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
3

Use of Multiple Semaphores for

Synchronizing the Tasks

 Example of the use of two semaphores

for synchronizing the tasks I, J and M

and the tasks J and L, respectively

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
4

Use of two semaphores for synchronizing

tasks I, J, K, L and M

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
5

 OSSemPost ()─ an OS IPC function for

posting a semaphore and assume

OSSemPend () ─ another OS IPC function

for waiting for the semaphore.

 Let sTask is the mutex semaphore pending

and posted at each task to let another run.

 Let sTask1 initially is 1 and sTask2, sTask3

and sTask4 initially are 0s

OS Functions for Semaphore

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
6

 Consider Codes such that firstly task I will

run, then J, then K, then L, then I when at an

initial instance sTask1 = 1 and sTask2 =

sTask3 = sTask4 = 0

Codes

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
7

Running of Tasks A, B, C, and D

Synchronized through IPCs s0, s1, s2 and s3

Task A Task B

Release

s1

Take s1

Task C

Release

s2

Take s2

Releases

s3

Task D

Take s3

Release

s0

Take s0

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
8

• Task A sends an IPC s1, B is waiting for s1,

when s1 releases, B takes s1 and runs.

Similarly, C runs on taking s2, D runs on

taking s3, again A runs on taking s0.

Running of the codes of tasks A to D

synchronizes using the IPCs

Running of Tasks A, B, C, and D

Synchronized through IPCs s0, s1, s2

and s3

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
9

Codes for task I wait for running

static void Task_ I (void *taskPointer) {

.

while (1) {

OSSemPend (sTask1) /* Post the

semaphore sTask1. Means that OS

function decrements sTask1 in

corresponding event control block.

sTask1 becomes 0 and following code

run*/

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
10

Codes for task I run and release semaphore for

J

/* Codes for Task_I */

.OSSemPost (sTask2) /* Post the

semaphore sTask2. This means that OS

function increments sTask2 in

corresponding event control block.

sTask2 becomes 1 */

};

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
11

Codes for task J wait for semaphore from I

 static void Task_ J (void *taskPointer) {

.

while (1) {

OSSemPend (sTask2) /* Wait sTask2. Means

wait till sTask2 is posted and becomes 1.

When sTask2 becomes 1 and the OS

function decrements sTask2 in

corresponding event control block, sTask2

becomes 0. Task then runs further the

following code*/

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
12

Codes for task J run and release semaphore

for K
 /* Code for Task J */

.

.

OSSemPost (sTask3) /* Post the semaphore

sTask3. Means that OS function increments

sTask3 in corresponding event control

block. sTask3 becomes 1. */

};

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
13

Codes for task K wait for semaphore from J

 static void Task_ K (void *taskPointer) {

.

while (1) {

OSSemPend (sTask3) /* Wait for the

semaphore sTask3. Means that wait till

sTask3 is posted and becomes 1. When

sTask3 becomes 1 and the OSSemPend

decrements sTask3 in corresponding event

control block. sTask3 becomes 0. Task then

runs further the following code*/

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
14

Codes for task K run and release semaphore

for L

/* Code for Task K */

.

.

OSSemPost (sTask4) /* Post the semaphore

sTask4. This means that OS function

increments sTask4 in corresponding event

control block. sTask4 becomes 1. */

};

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
15

Codes for task L wait for semaphore from K

static void Task_ L (void *taskPointer) {

.

while (1) {

OSSemPend (sTask4) /* Wait for the semaphore

sTask4. This means that task waits till sTask4 is

posted and becomes 1. When sTask4 becomes 1

and the OS function is to decrements sTask3 in

corresponding event control block. sTask4

becomes 0. Task then runs further the following

code*/

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
16

Codes for task L run and release semaphore

for I

 /* Code for Task L */

 .

 .

 OSSemPost (sTask1) /* Post the semaphore

sTask1. This means that OS function

increments sTask1 in corresponding event

control block. sTask1 becomes 1. */

 };

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
17

Number of tasks waiting for same

semaphore

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
18

Number of tasks waiting for Same

Semaphore

 OS Provides the answer

 In certain OS, a semaphore is given to

the task of highest priority among the

waiting tasks.

 In certain OS, a semaphore is given to

the longest waiting task (FIFO mode).

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
19

Number of tasks waiting for Same

Semaphore

 In certain OS, a semaphore is given as per

selected option and the option is provided to

choose among priority and FIFO.

 The task having priority, if started takes a

semaphore first in case the priority option is

selected. The task pending since longer

period takes a semaphore first in case the

FIFO option is selected.

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
20

Counting Semaphore

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
21

OS counting semaphore functions

 Counting semaphore scnt is an unsigned 8

or 16 or 32 bit-integer.

 A value of scnt controls the blocking or

running of the codes of a task.

 scnt decrements each time it is taken.

 scnt increments when released by a task.

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
22

Counting-semaphore

 scnt at an instance reflects the initialized

value minus the number of times it is taken

plus the number of times released.

 scnt can be considered as the number of

tokens present and the waiting task will do

the action if at least one token is present.

 The use of scnt is such that one of the task

thus waits to execute the codes or waits for

a resource till at least one token is found

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
23

 Assume that a task can send on a network the

stacks into 8 buffers.

 Each time the task runs it takes the semaphore and

sends the stack in one of the buffers, which is next

to the earlier one.

 Assume that a counting semaphore scnt is

initialized = 8. After sending the data into the

stack, the task takes the scnt and scnt decrements.

When a task tries to take the scnt when it is 0, then

the task blocks and cannot send into the buffer

Counting Semaphore application

example

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
24

 Consider Chocolate delivery task.

 It cannot deliver more than the total number

of chocolates, total loaded into the machine.

 Assume that a semCnt is initialized equal to

total.

 Each time, the new chocolates loaded in the

machine, semCnt increments by the number

of new chocolates.

ACVM Example

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
25

static void Task_Deliver (void *taskPointer) {

.

while (1) { /* Start an infinite while-loop. */

/* Wait for an event indicated by an IPC from Task
Read-Amount */

.

If (Chocolate_delivered) OSSemPend (semCnt) /* If
chocolate delivered is true, if semCnt is not 1 or >
1 (which means is 0 or less) else decrement the
semCnt and continue remaining operations */

.

};

Chocolate delivery task code

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
26

Summary

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
27

We learnt

• Multiple semaphores can be used in

multitasking system

• Different set of semaphores can share

among different set of tasks.

• Semaphore provides a mechanism to

synchronize the running of tasks

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
28

We learnt

• Counting semaphore provides a way of

taking it and releasing it number of times

• When taken by a waiting task section

when it is 1 or > 1, it decrements, the

semaphore becomes available

• It increments when posts (sent or released)

a task .

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
29

We learnt

 Counting semaphore is an unsigned integer

semaphore that can be ‘taken’ till its value =

0 and is usually initialized to a high value.

 It can also be ‘given’ (sent or posted) a

number of times.

2015 Chapter-9 L8: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill, Education
30

End of Lesson 8 of Chapter 9 on

Use of Multiple Semaphores and

counting Semaphore for

Synchronizing the Tasks

