
2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
1

REAL TIME OPERATING SYSTEM

PROGRAMMING-I: C/OS-II and

VxWorks

Lesson-3:
C/OS-II System level and task

Functions

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
2

1. System Level Functions

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
3

OSInit ()

• void OSInit (void)

At the beginning prior to the OSStart

()

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
4

 Function void OSInit (void) to initiate

the operating system

 Use is compulsory before calling

any OS kernel functions

 Refer Example 11.1- Step 2.

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
5

OSStart () and OSTickInit ()

 void OSStart (void)

After OSInit () and task-creating function(s)

• void OSTickInit (void)
In first task function that executes once.

Initializes the system timer ticks (RTC

interrupts)

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
6

OSStart ()

• Function void OSStart (void)
to start the initiated operating system and

created tasks Its use is compulsory for the

multitasking OS kernel operations

• Refer Example 11.2- Step 4.

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
7

2. Programming Examples─ OS Init

and OS Start

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
8

void main (void) {

OSInit ();

/* Create a task */

.

.

.

..

Step i: Initiating the RTOS

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
9

void main (void) {

OSInit ();

/* Create a task */

.

.

.

./*Start the RTOS */

OSStart ()

.

Step j: Starting the RTOS

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
10

3. Interrupt Service Task (ISR) Start and

End

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
11

• void OSIntEnter (void)
Just after start of the ISR codes OSIntExit

must call just before the return from ISR

• void OSIntExit (void)
 After the OSIntEnter () is called just after

the start of the ISR codes and OSIntExit is

called just before the return from ISR.

OSIntEnter () and OSIntExit ()

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
12

OSIntEnter ()

• Function void OSIntEnter (void)
─ used at the start of ISR

For sending a message to RTOS kernel for

taking control─ compulsory to let OS kernel

control the nesting of the ISRs in case of

occurrences of multiple interrupts of

varying priorities

• Refer Example 11.3- Step 2.

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
13

• Function void OSIntExit (void)
─ used just before the return from the running

ISR

 ─ For sending a message to RTOS kernel for

quitting control of presently running ISR

•Refer Example 11.4- Step 4.

OSIntExit ()

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
14

4. Critical Section Start and End

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
15

• OS_ENTER_CRITICAL
─ Macro to disable interrupts before a

critical section

• OS_EXIT_CRITICAL

 ─ Macro to enable interrupts. [ENTER

and EXIT functions form a pair in the

critical section]

Critical Section

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
16

• OS_ENTER_CRITICAL
─ used at the start of a ISR or task - for sending a

message to RTOS kernel and disabling the

interrupts

─ use compulsory when the OS kernel is to take

note of and disable the interrupts of the system

•Refer Example 11.5- Step 3.

OS_ENTER_CRITICAL

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
17

• OS_EXIT_CRITICAL
─ used at the end of critical section

─ for sending a message to RTOS kernel and

enabling the interrupts

─ Use is compulsory to OS kernel for taking note

of and enable the disabled interrupts.

•Refer Example 11.6- Step 5.

OS_EXIT_CRITICAL

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
18

5. System Clock Tick Initiate

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
19

OSTickInit () and

OS_TICKS_PER_SEC

• Function void OSTickInit (void)

 ─ is used to initiate the system clock

ticks and interrupts at regular intervals as

per OS_TICKS_PER_SEC predefined

when defining configuration of MUCOS

Refer Example 11.7- Steps 2 and 10.

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
20

6. Task Service Functions

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
21

Task Service Functions

 Service functions mean the functions

of multitasking service (task create,

suspend or resume), time setting and

time retrieving (getting) functions.

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
22

• unsigned byte OSTaskCreate (void

(*task) (void *taskPointer), void

*pmdata, OS_STK

*taskStackPointer, unsigned byte

taskPriority)

 Called for creating a task

• Refer Example 11.7 Steps 1, 2, 5

and 8

OSTaskCreate

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
23

• *taskPointer

─ a pointer to the codes of the task being

created

• *pmdata─ pointer
for an optional message data reference passed

to the task. If none, assign as NULL

OSTaskCreate…

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
24

• Refer Example 11.7 step 5

• OS_TASK_CREATE_EN
Must be preprocessor directive to enable

inclusion of task management functions

by MUCOS

• Refer Example 11.7- Step 1

Statement 1

Exemplary use of the pointers and stack

for task creation

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
25

• Assume that system tasks are of high priority

0 to 7. Each user-task is to be assigned a

priority, which must be set between 8 and

OS_MAX_TASKS +7 [or 8 and

OS_LOWEST_PRIORITY - 8].

If maximum number of user tasks

OS_MAX_TASKS is 8, the priority can be set

between 8 and 15. Refer Example 11.7- Step 1

Statement 1

Specifying Maximum Number of Tasks

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
26

• OS_LOWEST_PRIO must be set at 23

for eight user tasks of priority between 8

and 15, because MUCOS will assign

priority = 15 to lowest priority task

• System low priority tasks will be

assigned priorities between 16 and 23 .

•Refer Example 11.7- Step 1 Statement 2.

Specifying OS_LOWEST_PRIO

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
27

• unsigned byte OSTaskSuspend (unsigned

byte taskPriority)

─ Called for blocking a task (Example 11.8

Step 12)

• unsigned byte OSTaskResume (unsigned

byte taskPriority)

─ Called for resuming a blocked task

(Example 11.9 Step 20)

OSTaskSuspend and OSTaskResume

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
28

7. Programming Method and Example

Preprocessor commands, main and Task

Creation

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
29

• Method: RTOS after start first runs

FirstTask, and then FirstTask creates all the

application tasks and initiates system clock

ticks

• later suspend itself in infinite while loop

Programming Method

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
30

#define OS_MAX_TASKS 8

#define OS_LOWESTORIO 15

#define OS_MAX_TASKS

#define OS_LOWESTPRIO 15

#define OS_TASK_CREATE_EN 1

#define OS_TASK_DEL_EN 1

#define OS_TASK_SUSPEND_EN 1

#define OS_TASK_RESUME_EN 1

#define OS_TICS_PER_SEC 100

Step A: Program preprocessor

commands

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
31

#define FirstTaskPriority 8

#define FirstTaskStackSize 100

/* Define other task-priorities & stacksizes*/

static void FirstTask(*taskPointer);

static OS_STK FirstTask [FirstTaskStackSize]

Step B: Global functions and their

parameters declarations

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
32

#define task1Priority 9

#define task1StackSize 100

/* Define other task-priorities & stacksizes*/

static void task1(*taskPointer);

static OS_STK task1 [task1StackSize]

Step B: Global functions and their

parameters declarations…

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
33

#define task2Priority 10

#define task2StackSize 100

/* Define other task-priorities & stacksizes*/

static void task2(*taskPointer);

static OS_STK task2 [task2StackSize]

Step B: Global functions and their

parameters declarations…

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
34

void main (void) {

OSInit ();

/* Create First task */

OSTaskCreate (FirstTask, void (*) 0,(void

*)&FirstTaskStack[FirstTaskStackSize],

FirstTaskPriority);

OSStart ();

}

Step C: Main function

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
35

static void FirstTask (void *taskPointer) {

/*System clock time set */

OSTaskCreate (task1, void (*) 0,(void

*)&task1Stack [task1StackSize], task1Priority);

OSTaskCreate (task2, void (*) 0,(void

*)&task2Stack [task2StackSize], task2Priority);

 /* Create All application related remaining tasks

*/

Step D: First task for starting system clock

and creating application tasks

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
36

OSTimeSet (presetTime);

OSTickInit (); /* Initiate system timer ticking*/

/* Create application related highest priority

tasks */

...; ...; ..;

while (1) {...;

Step D: First task for starting system clock

and creating application tasks…

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
37

static void FirstTask (void *taskPointer) {

.

.

.

while (1) {

OSTaskSuspend (FirstTaskPriority);

}

Step E: First task suspending indefinitely

itself in while loop

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
38

static void task1 (void *taskPointer) {

.

.

while (1) {

.

.

 }

}

Step F: Application Tasks─ task1 and

task2

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
39

static void task2 (void *taskPointer) {

.

.

while (1) {

.

.

 }

}

Step F: Application Tasks─ task1 and

task2…

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
40

Summary

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
41

We learnt

• Initiating OS, starting OS, creating
tasks, setting system clock tick rate
and tick initiate functions and

• An example in which the OS on start,
first runs FirstTask and then FirstTask
creates application tasks and initiate
system clock ticks and later suspend
itself in infinite while loop.

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
42

We learnt

• MUCOS creating, defining priority and

stack-size, deleting, suspending and

resuming functions for task servicing

2015
Chapter-11 L03: "Embedded Systems - Architecture, Programming and Design",

Raj Kamal, Publs.: McGraw-Hill Education
43

End of Lesson-2 of Chapter 11 on

C/OS-II System level and task Functions

