Chapter 08: The Memory System

Lesson 18: Peripheral devices for memory— Optical Disks CDROM Memories

Objective

- Understand CD structure using polycarbonate layer with an organic dye on an aluminum base
- Learn how CD stores 0s and 1s by pits and lands on the tracks

Optical disk CD (compact disk) in Memory system

Optical disk CD (compact disk) in Memory system

- Read-only memory
- Stores once written large amounts of data
- Moved easily from one place to another
- Cost of storage is as low as \$0.10–0.20 per 700 MB CD

CD storing 700 MB on the tracks

- Thin, just ~ 1.2 mm (1/8 th of a cm).
- Diameter is 12 cm
- It has 6000 tracks (separated by 1.3 mm)
- Tracks more in density than magnetic disk tracks

- CD and CD-R
- The CD-R is recordable in a computer system
- The unused portion of the CD can be used again for writing
- Re-write CDs have also become available recently

Optical principles

 A laser beam has a property of high coherence and very fine aperture beam and negligible beam divergence

Reading from the CD

Reading from the CD

 On a spinning CD, two laser beams of the same wavelength are reflecting light from two places and get focused and are allowed to fall on a photo-detector

The light reflected from pit to land transition in the moving CD

The CD structure

In-phase and 180° out of phase beam

- The reflected beam can be either in-phase or in 180° out of phase at a given instance
- When beams of 180° phase differences reach the photodetector, their amplitudes cancel and therefore the combined effect is zero intensity
- When the in-phase beams fall, the combined wave amplitudes double and thus intensity is reinforced to 4 times than that of a single beam

Many tracks on the CD

- Each CD track stores a large number of pits and lands
- The beams therefore produced from the pits and lands on the spinning plate give the output of 1s and 0s at the instances explained later

The change from land to pit

- 1. Affects the light such that the reflected beam is four times the single beam light
- The photodetector generates the outputs, but again it is the high saturation photocurrent, which corresponds to logic 1

A pit or land reflection

- 2. No change in reflection of light waves
- Hence, the photodetector, which receives the light beams, will again show saturation photocurrent
- The photodetector generates the outputs corresponding to 1 again

Change from pit to land

3. Affects the light such that there are now two beams one from pit and another from land, and both are in 180° phase-difference when they reach the photodetector

• Therefore the output will be 0

Writing to the CD

Writing the pits and lands

- Using laser beam
- Beam falls on the optical disk in a programmed manner
- Produces a pit followed by a land when writing 0
- Laser light burns the polycarbonate, which has an organic dye

Writing the pits and lands

- When the laser beam falls the cross section, it burns and produces a pit
- Burning means that the organic dye becomes opaque and does not transmit light up to back of the aluminum

Writing the pits and lands

- When the laser beam falls the cross section, it burns and produces a pit
- Burning means that the organic dye becomes opaque and does not transmit light up to back of the aluminum

Summary

We learnt

- CD organisation using polycarbonate layer with an organic dye on an aluminum base
- Use of laser beam such that CD stores pits and lands on the tracks

We learnt

- When the laser beam falls the cross section, it burns and produces a pit when the organic dye becomes opaque and does not transmit light up to back of the aluminum
- Change from a pit to land on a CD track gives 0 output from photodetector due to two out-of-phase optical beams at the transition point else there is 1 output from land to pit transition or on land

End of Lesson 18 on Peripheral devices for memory— Optical Disks CDROM Memories