Chapter 05: Basic Processing Units ... Control Unit Design

Lesson 17: Microprogram sequencing and next address field

Objective

- Learn microprogram sequencing
- Learn how to use of next address field for generating next instruction address

Encoding of control signals at control memory address

- When the control signals in a microinstruction are stored in control memory with encoding, then the number of storage bits at each address can be reduced as per the design
- A design selects how many bits to encode out of the needed ones and how many groups of the storing units connect the MUXs

Encoding of control signals at control memory address

- Consider in a processor thirty two (=2⁶) storingunits
- Suppose each unit is designed independently with no MUX in between
- Then six bits can encode up to 2⁶ storing units controlling signals

Encoding of control signals at control memory address

- The sixteen select functions encode by 4-bits
- The eight data routes encode by 3-bits
- The total number of output word bits at control memory reduces to 6 + 4 + 3 = 13

Schaum's Outline of Theory and Problems of Computer Architecture Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

6

Microprogram sequencing

Microprogram sequencing

- Several operations execute with varying addressing modes
- For example, consider ADD *r*1, *r*2, *r*3; ADD (*r*1), *r*2, *r*3; ADD *x*(*r*1), *r*2, *r*3; and ADD (*r*1)+, *r*2, *r*3
- The first has register-addressing mode, the second has register-indirect addressing, the third has index-offset addressing mode, and the fourth has post autoincrement addressing mode instructions

Microprogram Sequencing

- Sets of microinstructions (functions) in Section
 5.14.5 used in these instructions
- When for every instruction's microprogram, there is a separate set of sequentially stored microinstructions, the number of addresses needed for all the instructions' microprograms will be too large

Set of micro-instructions for ADD in four addressing modes

- Func1: Fetch instruction opcode and operands
- Func2: IR \rightarrow ID
- Func3: $r2 \rightarrow X, r3 \rightarrow Y$,
- Func4: Addition of X and Y and result in Z
- Func5: MDR \leftarrow Z
- Func6: $r1 \rightarrow X, x \rightarrow Y$, Temp $\leftarrow Z$ and Branch Func8
- Func7: Temp ←r1, r1 → X, const 4 → Y, r1 ← Z (Post Increment r1 by 4 for next word in memory)
- Func8: Store and fetch next instruction
- Function 9:

Schaum's Outline of Theory and Problems of Computer Architecture Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

Subsets of the microinstructions Func1 to Func4

- All four ADD instruction's addressing modes execute subset of the microinstructions Func1 to Func4
- There is a way in which the sequence of microinstructions can be changed; just as branch to subroutines at a program in the system memory and different micrograms can overlap at the control-store memory

Example

 Assume control store memory has 12-bit addresses (4096) and therefore instruction decoder will have 12-bits to reflect the starting address of a microprogram

Example

 Let function select field encode microinstruction branch (MBR bits) as 4 bits = 0110 at the function select field

Example

- Assume that an instruction control-store address on branching just change has six lower bits of addresses
- A microprogram maximum length assumed as 2⁶ = 64

Branch microinstruction encoding

- MBR 101000, MBR 101111, MBR 111000 can specify (MBR) to three MBR functions, Func6, Func7, and Func8, respectively
- The last six bits are ORed with lower 6 bits in ID to get the MBR destination address
- If ID bits are 1100 1000 0000, then MBR destination addresses after ORing will be 1100 101 01000, 1100 101 01111, and 1100 101 11000, respectively

Set of micro-instructions Microinstructions

- Func1: Fetch instruction opcode and operands
- Func2: IR \rightarrow ID
- Fnct3: $r3 \rightarrow X, r3 \rightarrow Y, Z \leftarrow X. XOR. Y, Z \leftarrow X$
- Fnct4: r3 → X, const 1 → Y, Z ← X. ADD. Y, r3 ← Z
 (r3 now has two's complement of earlier r3)
- Func5: MDR \leftarrow Z
- Func6: $r2 \rightarrow X$, $r3 \rightarrow Y$, $Z \leftarrow X$. ADD. Y, $r1 \leftarrow Z$, Branch Func1

ADD r1, r2, r3,

- Func1— Fetch instruction opcode and operands
- Func2 Branch to Func6
- Func6

SUB r1, r2, r3 Microinstructions

- Func1— Fetch instruction opcode and operands
- Function 2— Branch to Func3
- Func3 $-r3 \rightarrow X, r3 \rightarrow Y, Z \leftarrow X. XOR. Y, Z \leftarrow X$
- Func4— $r3 \rightarrow X$, const 1 $\rightarrow Y$, Z $\leftarrow X$. ADD. Y, r3 \leftarrow Z (r3 now has two's complement of earlier r3)
- Function 5— Branch to Func6
- Func6— $r2 \rightarrow X, r3 \rightarrow Y, Z \leftarrow X. ADD. Y, r1 \leftarrow Z,$ Branch Func1

Microinstructions with next address field

Schaum's Outline of Theory and Problems of Computer Architecture Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

Branch instruction

- Wastes one cycle
- Many microinstructions having common functions to implement
- Therefore, to reduce the number of cycles consumed by branch instruction, another alternative strategy is to place the next address field at each microinstruction

Fields of microinstructions with the next address field

- The first time when the microprogram execution starts, the next address is as per ID output, which reflects the IR, condition flags, and external inputs during an instruction
- Then next address field directs it to next microinstruction

Four fields at a control memory address in a vertical organisation

13 bits f Control store n	for 60 control signa nemory (ROM) Mi	als and 12 bits for ne croinstruction	xt address
16 Functions Select Signals	8 Data Route Select Signals	32 storing-units input/output select	12 bits for next address
decoder with 16 outputs	decoder with 8 outputs	decoder with 32 outputs	╁╁╁╁╁╁╁╁╁

Schaum's Outline of Theory and Problems of Computer Architecture Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

Summary

Schaum's Outline of Theory and Problems of Computer Architecture Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009

We Learnt

- Use of horizontal and vertical organization require large number of control bits
- Uses of MUXs in Vertical organisation of Microinstructions
- Microprogram sequencing and overlapping of microinstructions
- Use of next address field for generating next instruction address

End of Lesson 17 on Microprogram sequencing and next address field