Syllabus for
Ph.D. Entrance Exam in
Applied Chemistry
Under the
Faculty of Engineering
Devi Ahilya Vishwavidyalaya,
Indore
Syllabus for Ph.D. Entrance Exam in Applied Chemistry
Under the Faculty of Engineering of
Devi Ahilya Vishwavidyalaya, Indore

Stereochemistry and Reaction Mechanism

1. Stereochemistry: Configuration and chirality, optical isomerism, R,S-convention, Geometrical isomerism E.Z-convention, Conformational analysis
2. Reactive Intermediates: Generation, structure and reactions of carbocations, carbanions, carbenes, nitrenes and free radicals.
5. Addition to Carbon-Carbon Multiple Bonds: Mechanism, direction and stereochemistry, addition to alkenes and alkynes, Transition metal organometallics.
6. Addition to Carbon-hetero Multiple Bonds: Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acids, esters and nitriles, Addition of Grignard reagents.
7. Elimination Reactions: Reaction mechanism, Direction, stereochemistry, formation of alkenes, alkynes and other multiple bonds.
10. Ring closure and opening reactions: Formation and opening of rings, Dieckmann reaction, Baldwin Rules, Robinson-Annellation, Michael-Robinson addition Thorpe Ziegler reaction, Acylation Cycloaddition, Simmons-Smith reaction
Thermodynamics and Chemical Kinetics

Main Group Chemistry

4. Chemistry of Silicon: Organosilicon Compounds, Silicates and Aluminosilicates. Low-valent silicon compounds, silylens and RsSi-.
5. Inorganic rings, Cages, Clusters and Polymers: Phosphaazenes, Cyclophosphazenes, Polyphosphazenes and the polymers derived from them. Polysilanes.

6. Chemistry of halogens and noble gases: Inter Halogens, Poly Halide Anions, CFC’s, Ozone layer and Clathrates.

7. Chemistry of group 12 elements: Halides & Oxygen compounds, chalcogenides & Related compounds, low-valent compounds & Formation of coordination complexes.

Basic Biological Chemistry

1. Introduction to Biomolecules: Carbohydrates, Proteins, Amino acids, Lipids and phospholipids, Biological membranes, transport across membranes.
2. Nucleic Acids: Base pairing, double helices, DNA replication, transcription and translation.
3. Enzymes: enzyme kinetics and mechanism, nature and application of enzymes.

Quantum Chemistry

2. Linear Motion and harmonic Oscillators: Translation, harmonic, particle in a box a penetration through barriers.
4. Angular momentum: Angular momentum operators, definition of states, Composite systems.
5. Techniques of Approximation: Perturbation theory, variation theory, HF theoretic, time dependent perturbation.
Pharmaceutical Chemistry

1. **Drug Discovery and Drug Development**: Introduction, Present and Past, Drugs and the medicinal chemist, Classification of drugs, Drug targets specification, Choice of Bioassay, In Vivo and in Vitro tests, Pit fails.

2. **Drug Action at Receptors**: Receptor role, Neuro-transmitters and Hormones, Change of shape by the receptors, Design of Agonists and Antagonists, Drug action on DNA and RNA.

4. **Protein-Ligand Interactions**: Concepts and applications.

Surface Chemistry Adsorption and Catalysis

1. **Introduction**: Basics of surface chemistry, surface tension and adsorption.

2. **Surface & Colloids**: Coagulation and kinetics of coagulation, spontaneous aging of colloids.

3. **Aggregation Processes**: Coalescence and particle growth, Stability of colloids, Electric properties, theories of structure of electrical double layer, determination of charge on colloids particle, size and shape of colloids particles.

4. **Association of colloids**: Self-assembly system, Reversal of phase, emulsion, Macro and Micro emulsion and Aerosols, emulsifying agents, theories of emulsification, gels, sol gel transformation thixotropy.

5. **Electrokinetic Effect**: Electrosorption, electrophoresis, streaming potential, Dorn effect, stabilization of surfactant solutions.

7. **Catalysis**: Homogeneous and Heterogeneous Catalysts, Acid base catalysis, Biocatalysts, Micellar catalysis, Mechanism of few catalytic reactions.

Symmetry and Group Theory

1. **Symmetry elements and operations**: Symmetry planes and Reflections, Inversion centre, Proper axes and Proper rotations, Improper axes and Improper rotations.

2. **Relations among Symmetry elements**: Products of symmetry operations, Equivalent symmetry elements and Equivalent atoms, General relations among symmetry elements and operations, symmetry point groups, symmetry classification of molecules.

3. **Representations of groups**: Important rules about irreducible representations and their characters, Relationship between reducible and irreducible representations with examples, construction of character tables.

5. **Molecular orbital theory for Inorganic compounds**: Transformation properties of atomic orbitals, Molecular orbitals for sigma bonding in tetrahedral and octahedral molecules.
6. **Ligand Field theory**: Introduction, Electronic structure of free atoms and ions, splitting of levels and terms in a chemical environment, construction of energy level diagram.

Chemistry of Transition and Inner - Transition Elements

1. **Survey of Transition Metal Chemistry** – Electronic configuration, general characteristics, oxidation states, pπ-acid ligands, metal complexes, metal-metal bond, Quadruple bonds.
2. **Chemistry of First Transition Series** – The elements, compounds, complexes, organometallics and bioinorganic chemistry of first transition series in different oxidation states.
3. **Chemistry of Second & Third Transition Series** – The elements, compounds, complexes, organometallics and bioinorganic chemistry of second and third transition series in different oxidation states.
4. **Lanthanides**: Electronic configuration, oxidation states, coordination numbers and stereochemistry, Magnetism and spectra, complexes and organometallic chemistry of lanthanides.
5. **Actinides**: Electronic configuration, oxidation states, coordination numbers and stereochemistry, Magnetism and spectra, complexes and organometallic chemistry of Actinides.
6. **Transition Metal Catalyzed Reactions**: Oxidative addition, Elimination reactions, Migration reactions.
7. **Mechanism of Inorganic Reactions**: Inner sphere, Outer sphere, Trans effect.

Physical Methods of Structure Elucidation

1. **Ultraviolet (UV) Spectroscopy**: Principles, origin, effect of structure, solvents, conjugation and Chromophores and Auxochromes, the Woodward-Fieser rules, PES and related spectroscopy.
2. **Microwave Spectroscopy**: Rotation of molecules and rotational spectra- Diatomic molecules, polyatomic molecules-Linear, symmetric top and asymmetric top molecules.
5. **Mossbauer Spectroscopy**: Principles and applications of Mossbauer spectroscopy.
6. **Magnetic Resonance Spectroscopy**: Magnetic resonance- spin angular momentum, Larmor frequency, Relaxation time, NMR spectroscopy of proton and C1 Introduction to ESR. Hyperfine structure and double resonance in ESR. Applications of ESR spectroscopy.
7. **Mass Spectroscopy**: Principles instrumentation and applications.
Analytical Principles and Instrumental Methods of Analysis

1. Atomic Absorption Spectroscopy: General principles, instrumental set up and analytical procedures and applications,
2. Thermo-Analytical Method: Theory, instrumental requirements and methodology for thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), applications
3. Chromatographic Methods: Classification of chromatographic methods according to separation and development procedure, Instrumentation and applications (GC and HPLC)
4. Electrochemical Techniques: Conductometry, pH metry, Karl Fischer titration, cyclic voltametry, Polarography
5. Modern Methods of Surfaces and Crystal Analysis: SEM, TEM, AFM, XRD

Computational Chemistry

1. Operating Systems: Basic understanding of operating systems: DOS, Windows, UNIX, Linux
2. Programming Concepts of Programming languages, use of programming languages (FORTRAN/ C/C++) in making of chemistry programs
3. Mathematical Modeling methods including QSAR/PR/TR (2D & 3D)
4. Drug Design methods Concept of Docking and Virtual Screening
5. Data Analysis: Uncertainties, Errors, calibrations, Mean, Standard Deviation, Least square fit,
6. Concepts of various methods of correlation analysis: Linear and Non-linear regression methods including Multiple Linear Regression (MLR), Artificial Neural Networks(ANN), Support Vector Machine(SVM), Partial Least Squares (PLS)