Lesson 04
Exposed, Hidden, Near and Far Mobile terminal problems and Power control methods
A cell \(c \) with four radio-carriers using the same radio carrier frequency \(f_c \) in the same time-slot and CSMA
Multiple Access Control for Exposed Terminals in CSMA

• When ch2 is active, then ch0 cannot be used by WS3 for transmitting to WS0 even though there is no interference between ch0 and ch2
• WS3 senses that the radio carrier f_c being used by WS2 and backs off
• WS3 thus exposed to the WS2 carrier
Hidden Terminal Problem in CSMA

- WS_0 cannot sense the ch_0 signals from WS_0 because the signal strength decreases as the inverse of the square of the distance between the two terminals.
- When WS_0 transmits to WS_1 or WS_2, since WS_3 does not sense that the radio carrier f_c is being used by WS_0.
- WS_3 also starts transmission to WS_1 or WS_2.
Hidden Terminal Problem in CSMA

- The radio carriers from WS0 and WS3 interfere (collide) in the region near WS1 and WS2
- The collisions of the signals from WS3 with signals from WS0 are not detected by WS0 in CSMA (but they can be detected in CSMA/CD)
- This is because WS_0 is hidden to the WS_3 carrier
Multiple Access Control from Near and Far Terminals

- Each WS transmits with a set of frequencies coded with a distinct code.
- WS_3 sends signals via ch_0 for WS_0.
- The signal strength is weak along the ch_0 region near WS_0.
- Signal strength decreases as inverse of the square of the distance between the two terminals.
Multiple Access Control from Near and Far Terminals

- When WS_0 is transmitting to WS_1 or WS_2, the WS_3 signal, being weak in proximity to WS_0, is not listened to by WS_0
- The ch_1 signal strengths are higher near WS_0 as compared to the ch_0 signal strengths
Multiple Access Control from Near and Far Terminals

- The strong ch_1 signals superimpose on the weak ch_0 signals at WS_0
- WS_3 is the *far terminal* and WS_1 or WS_2 are the *near terminals*
- The radio carriers from both WS_3 and WS_1 will be listened to if the transmission power is raised in ch_0 or decreased in ch_1
A cell c with near and far terminals using four radio-carriers.
Power control

• Required for the far and near terminals to avoid drowning of the far terminal signals in presence of signals from the near terminals
GSM system BTS transmission

- To an MS during CCH data bursts, the required power transmission level from that MS is decided by measurements of the signal strengths from the MS.
- The RRM layer performs the signal measurement and power control tasks.
- GSM defines five levels of power transmission.
CDPD transceivers

- Transmit the power-received level during the CSI (channel stream identification) data bursts for an MS by measurements of the signal strengths at the RRM
GSM systems closed loop power control

- The MS and BTS measures the signal strength
- MS transmits information regarding the signal quality to the BTS
- MS adjusts its power level to minimize the transmitted power and still maintain an acceptable quality of signals
- Both ways transmission of measured power and receiving end adjusts its power accordingly
GSM systems closed loop power control

• MS adjusts its power level to minimize the transmitted power and still maintain an acceptable quality of signals
• Closed loop—Both ways transmission of measured power and receiving end adjusts its power gain accordingly
CDMA IS-95 Open loop power control

- Mechanism for near and far terminals
- Open loop—One way transmission of measured power and receiver end adjusts its power gain accordingly
Summary

• Wireless exposed and hidden terminal problem
• Wireless near and far terminal problem
• Closed loop power control in GSM
• Open loop in CDMA
End of Lesson 04
Exposed, Hidden, Near and Far Mobile terminal problems and Power control methods