Lesson 8: DESIGN PROCESSES AND DESIGN METRIC FOR AN EMBEDDED-SYSTEM DESIGN
Abstraction

- Each problem component first abstracted.
- For example, Display picture and text as an abstract class.
- Robotic system problem abstraction in terms of control of motors in different degrees of freedoms.
- Application software abstracted as concurrently running multiple threads and interrupt service threads.
Program Model

- Procedure Oriented
- Objected Oriented
- Sequential processes
- Concurrent processes
- State machine
Object oriented Model

- Classes
- Objects
- Interfaces
- Package
Hardware and Software architecture

- Assumed to consists multiple layers
- Each architectural layer be well understood before a design
Extra functional Properties

- Extra functional properties required in the system being developed be well understood from the design.
System Related Family designs

- Families of related systems developed earlier taken into consideration during designing
Modular Design

- Decomposition of software into modules that are to be implemented.
- Modules should be such that they can be composed (coupled or integrated) later.
- Effective Modular design should ensure effective (i) function independence, (ii) cohesion and (iii) coupling.
Modules

- Be clearly understood and maintain continuity.
- Appropriate protection strategies are necessary for each module. A module is not permitted to change or modify another module functionality.
- For example, protection from a device driver modifying the configuration of another device.
Mapping

- Mapping into various representations done considering the software requirements.
- For example, data flow in the same path during the program flow can be mapped together as a single entity.
Transform and transaction mapping

- For example, an image is input data to a system; it can have a different number of pixels and colors of each pixel. The system has to store or process each pixel and color.
- Transform mapping of image is done by appropriate compression and storage algorithms.
- Transaction mapping is done to define the sequence of the images.
User Interfaces Design

- Designed as per user requirements, analysis of the environment and system functions.

- For example, in an automatic chocolate vending machine system, the user interface is a LCD matrix display. It can display a welcome message as well as specify the coins needed to be inserted into the machine for each type of chocolate. Same ACVM may be designed with touch screen GUI. Same ACVM may be designed with VUIs. A GUI or VUI or user interface or LCD matrix display
Interface design validation

- Customer validation
- For example, the customer must validate message’s language, screen logo, screen icons and background color, wallpaper, menus and dialogs before an interface design can proceed to the implementation stage
Refinements

- Each component and module design needs to be refined iteratively till it becomes the most appropriate for implementation by the software team.
Design Metrics
Design Metrics

- Power Dissipation
- Performance
- Process Deadlines
- User Interfaces
- Size
- Engineering cost
- Manufacturing cost
Design Metrics (Contd.)

- Flexibility
- Prototype development Time
- Time-to-market System and
- User safety Maintenance
Abstraction of Design Process Steps

- A design process **bottom-to-top design** if it builds starting from the components.
- A design process **top-to-down design** if it first starts with abstraction of the process and then after abstraction the details are created. Top-to-down design approach is most favoured approach.
Software Design Cycle
Activities for Software Design during Software-Development Process

One Life Cycle

Development Process

1. Model/Analyse
 Requirements of System

2. Design
 Data Structure, Software Architecture, Interfaces and Algorithms

3. Implementation
 of Design

4. Test
 Internal logic and External functions

Linear Sequence
Five levels of abstraction from top level to bottom level in the design process

- Requirements
- Specifications
- Architecture
- Components
- System Integration
Requirements

Complete clarity of

- required purpose,
- inputs,
- outputs,
- functioning,
- design metrics and
- Validation requirements for finally developed systems specifications.

Consistency in the requirements
Specifications

Clear specifications of Customer expectations from the product.

Needs specifications for

- hardware, for example, peripherals, devices processor and memory specifications
- data types and processing specifications
Needed specifications

- Expected system behavior specifications,
- Constraints of design,
- Expected life cycle specifications of the product.
- Process specifications analysed by making lists of inputs on events list, outputs on events, processes activated on each event.
Architecture

- data flow graphs
- program models
- software architecture layers and
- hardware architecture
- interfaces design
- system integration
Software architectural layers

- How the different elements – data structures, databases, algorithms, control functions, state transition functions, process, data and program flow are to be organized.
- What shall be design of data structures and databases that would be most appropriate for the given problem? Whether data organised as a tree-like structure will be appropriate? What will be the design of the components in the data?
Hardware Components

- Processor, ASIP and single purpose processors in the system
- Memory RAM, ROM or internal and external flash or secondary memory in the system
- Peripherals and devices internal and external to the system
- Ports and buses in the system
- Power source or battery in the system
Summary

We learnt

- Design processes, models,
- Modular and object oriented concepts
- Design Metrics
- Requirements
- Specifications
- Architecture
- Components
- System Integration
End of Lesson 8